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Abstract

This thesis examines the mathematical properties of networks, specifically degree

centrality at the actor (node) and group (network) level. An algorithm is presented for the

creation of all possible edge, node, chain and group degree structures for a given network

size and edge density. The census of networks size five through fifteen are used to

investigate degree distributions, degrees of freedom and effects of size and density on

actor and group degree. Variability (entropy) of information based on actor and network

degree centrality structure variations are provided as insight into the complexity of

networks. Results indicate an underlying structural influence irrelevant of context

suggesting residual data as the contextual behavior element. Power law, fat tail and low

density distributions are empirically produced through non-contextual network census

suggesting the current behavioral models as structural influence rather than human

influence. Finally a general theory for autonomic structural influence is presented with

implications for past, present and future research in the area.
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Chapter 1
Theory and Research

Introduction

Network scientists use matrix algebra (Sabidussi, 1966, Wasserman & Faust,

1994) and measures of network structure as indicators of system behavior (Bavelas, 1948,

1950; Freeman, 1977, 1979, 1980; Bonacich 1972, 1987). These measures and methods

have been used on networks of all sizes from small group (Leavitt, 1951) to hyperlink

networks (Rosen, et. al. 2003; Barnett & Park, 2005, Barnet, Chon, et. al. 2001) and

varying contexts including Canadian provinces (Barnett & Sung, 2003), organizations

(Carley, 1996), information entropy (Tutzauer, 2007) and semantic analysis of textual

information (Doerfel & Barnett, 1999).

Among network measures, nodal degree distributions are highly prevalent.

Although usage of degree has been promiscuous over the last half century there has been

little work investigating the properties and characteristics of the measure under perfect

conditions. Given a matrix of any size with any set of connections there are an absolute

number of possible combinations and resulting centrality measures; yet modern research

considers random distributions of large data sets arguing for power-law distributions of

nodal centrality only1.

This paper focuses on the properties of degree centrality under conditions of

varying network size, edge density, edge strength and directionality. Readers are

expected to be familiar with matrix algebra and its use with social networks and graph

theory. Seminal works on the topic include Erdos & Renyi (1960), Freeman (1979), and

Wasserman & Faust (1994).

1 See Social Networks volume 29, issue 2 (May, 2007) for a recent overview of p* methodologies.
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The remainder of Chapter 1 will discuss degree centrality, research about the

measure and the mathematics behind chain-link degree centrality structures. Chapter 2

will focus on the methods of analysis to create the results in Chapter 3. Chapter 4 will

provide discussion of the results and insights into how this research may be taken further.

Point/Degree Centrality (DC)

Degree Centrality2 (DC) indicates the direct connectivity of one actor of

the network to all other actors in the network. It has been described as an index of socio-

metric status (Friedkin, 1991) and ego density (Wasserman & Faust, 1994). The measure

was introduced to social science by Bavelas (1948) and Sabidussi (1966). Freeman’s

seminal paper on centrality (1979) standardized the formulae which are referred to via.

Wasserman & Faust:

 


N

j ijiD xnC
1

)( [1.1] 3

The base formula assumes a binary, non-reflexive, symmetrical network due to

the original context of human relationships. It was assumed that two persons who

communicated did so bi-directionally and without talking to themselves. To standardize

Formula [1.1] divide by the total possible connections.
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Under such conditions, the over-all network, or group degree centrality, can be

measured as [3.1]. Freeman (1979) provided a proof for the denominator.
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2 Degree centrality is called “valence” or simply “degree” in graph theory.
3 Formula (5.2) page 178.
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Actor degree can be described as “in” and “out” degree centrality for directed

networks. Out directionality represents the actor’s direct connectivity to others in the

network. In directionality represents the actor’s popularity with others. The formulae are

represented as follows:

 


N

j jiiinD xnC
1

)( [1.2]

 

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j ijioutD xnC
1

)( [1.3]

The measures are standardized as before:
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Finally, directed group degree centrality can be calculated and compared to other

networks using:

2

1

)1(

)]('*)('[





 

N

nCnC
C

N

i iDD

D [3.2] 4

The group measure [3.2] can be reduced to [3.3] which illustrates the measure is a

function of the maximum actor degree centrality of the network and the sum of all actor

degree centralities (Donninger, 1986). Donninger also pointed out the alteration in the

denominator for directed networks.
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4 Adapted from Wasserman and Faust Formula (5.5) page 180. This version uses standardized vs. non-
standardized values.
5 C’D(n*) is the maximum C’D(ni).
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Reflexivity is defined as the ability for an actor to communicate with itself.

Although this may seem ridiculous there are circumstances where an actor might do so

such as computer networks and networks of networks (aggregation). The formulae are

altered to accommodate for the non-zero diagonal as follows:
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In non-binary networks the edge strengths can and should be pre-standardized

relative to the total strength of the network. The standardized edges are now proportional

and can be compared across networks. Under conditions of non-binary networks the

formulae are updated as follows:
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Non-reflexive non-binary group degree centrality:
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Investigations of Degree/Point Centrality

Network topologies – groups of similar network structures – have been an

important area of research. Degree centrality has been compared across topologies

include ring lattice, small world, Erdos random, core-periphery, scale free and cellular

(Airoldi & Carley, 2005). Attention has been given to actor level degree distributions in

large networks (Barabasi & Albert, 1999) using random sampling of network structures

(Newman, Strogatz, Watts, 2001).

Erdos and Renyi (1960) are credited as seminal research using Poisson

distribution random sampling of networks. This distribution has been challenged by

research suggesting real-world networks are scale-free with actor distributions following

a power-law curve (Newman, Watts, Strogatz, 2002).

Butts (2001) utilized existing theories of complexity to describe the properties of

networks and nodes in networks. Conclusions state real networks are similar in

complexity to random networks and the results suggest a hypothesis: the aggregate

distribution of empirically realized social networks is isomorphic with a uniform

distribution over the space of all graphs, conditional on graph size and density (Butts, pg

67). Further research into this phenomenon has not been published.

Analysis has been conducted considering the effect of error on degree centrality

measures across multiple network sizes and densities (Carley & Butts, 1999; Borgatti &

Carley, 2006). The “robustness” of a measure is a function of how well it handles

reporting error. Investigation into the effect of adding and removing actors and edges as

reporting error show accuracy declines with increasing error (Borgatti & Carley, 2006)

and the topology of the network influences the amount of error (Frantz & Carley, 2005).
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Understanding the nature of degree centrality does not require prediction or

random sampling. The following section will provide a mathematical and algorithmic

solution for calculation of degree centrality based on network size and edge density. By

way of this algorithm a probability distribution for group and actor degree centrality

values can be achieved at any aggregation6 and used to understand the centrality measure

under controlled conditions. Further, the probability distribution for any actor or group

degree across the population is possible.

Chain-Link Structures

Basic properties must be identified mathematically to create the degree centrality

census. The following formulae are derived from the matrix algebra used to represent

networks. Current considerations are based on a non-reflexive binary network.

Considerations for reflexive and strength based networks follow.

Let N = the number of nodes/actors in the network.

Let E = the number of edges in the network.

GDE  [4]7

Let G = the maximum number of edges possible in the given network.

)1(  NNG [5]

Let D = the edge density of the network.

G

E
D  [6]

Let M = maximum edges place-able on a given actor.

6 The limitation becomes one of computing power.
7 The line above the right half of the equation signifies the ceiling function. Ceiling rounds up any decimal
values to the nearest integer irrelevant of the decimal. Partial edges cannot exist in a network and are
considered full edges.
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1 NM [7]

Let CE = edge structural combinations.
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
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
 [8]

Formula [8] is the number of combinations for E edges on G possible edges using

standard combinatorial mathematics. The result is the total possible edge placement

structures of binary networks.

Given a network of size N and density D it is known that E edges must be placed

where no more than M edges can exist on a given actor. Further, if a number of edges e

is placed on an actor n there exist that many less edges available to place on other actors

and one less actor in the network available to place them on. This process of placement

can be described as an edge to actor link in a chain

e1-n1, e2-n2, … ek-nk [9]

where k is the number of edge-actor links in the chain, e is the number of edges being

placed and n is the number of actors receiving e edges in the link. The chain can be read

as “e edges placed on n actors” for a total of (e)(n) edges placed. The resulting chain of

edge-actor links has the properties below in order to satisfy network size and density

constraints.
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Formula [10] indicates no more than M edges can ever be placed on any actor in

the chain. Formula [11] indicates the edge placement volume must decrease as the chain

grows; creation of a chain 4-1, 4-1 (four edges on one actor, four edges on one actor) is

the same as 4-2 (four edges on two actors) and the final order 4-2, 4-1 vs. 4-1, 4-2 is

irrelevant to the mathematics8.

Formula [12] indicates the total number of actors that have edges must never

exceed the total number of actors in the network; however some actors can be unused.

They are isolates. Formula [13] indicates that the sum of all links of the chain multiplied

must equal the total edges placed in the network. All chains created will fit the specified

network size and density of measure by using these properties.

The CE structural combinations can also be calculated using the chain

methodology.

in
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n
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




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


1
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[14.1]
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j
jnN [15]

where  is the number of available actors for edge placemen as indicated in Formula

[15]. Formula [14.1] can be reduced to Formula [16] for actor isomorphic structures CN

if edge placement is not considered. This value represents the perspective that degree

distribution is important, but the specific actor relationship to the distribution is not.


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









k

i i

N
n

C
1


[16]

8 The use of this property is especially important for a computational algorithm. By forcing the edge size to
decrease over time chain redundancy is eliminated. In other words, 4-1, 4-2 is the same as 4-2, 4-1 so do
not process it twice. This occurs across all chains – order is not important, simply the edge to actor
placement. Recursion can be used when creating the algorithm because of this property.
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Value ek is the out degree centrality for all nk in the chain. Group degree

centrality is based solely on the largest actor value in the chain as per Formula [3.3].

This value is always e1. Using Formula [3.6] we can determine the group degree

centrality of any chain to be






)])([( 1eN
CD [3.7]

where  is either the number of edges (binary) or the sum of strengths and  is the

proper denominator based on reflexivity and strengths. Therefore, if multiple chains with

the same e1 exist, those chains also share the same group degree centrality value (another

level of aggregation).

Non-Binary / Strength of Ties

To accommodate for strength values, formula [14.1] is replaced by:

in

i

k

i i

E
e

M

n
EC 
















 

1

!


[14.2]

Every edge has a non-zero positive strength that can be placed. When using the

standardized strengths from Formulae [2.6] and [2.7] the maximum and minimum are

defined as 0 <= Min <= Max <= 1 without consideration for used strengths; however this

can be reduced based on the chain structures. Chain structures dictate the edge to actor

distributions. The maximum strength of any edge to actor link in the chain is the sum of

the maximum edge strength values for the number of edges to be placed on the actor.

The minimum possible strength of any edge to actor link in the chain is the sum of

the minimum edge strength values for the number of edges to be placed on the least

connected actor or zero if there are actors without edges. As the links in the chain
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progress the number of available strengths for placement reduces until none are available

at the same rate as the edge placement on actors.

The minimum / maximum group degree centrality can be used to determine a

final range of possible values as shown in Formulae [17.1] and [17.2] respectively.

Let SL = {s1, s2, …, sE} the ordered set of edge strengths ordered largest to

smallest.






])[(N
CD
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where  is either [3.5] or [3.6] depending on reflexivity and:
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Formula [17.3] represents the smallest maximum actor degree centrality possible.

The inequality conditional requires the largest actor degree centrality be associated with

the first link in the chain and all subsequent sum actor centralities in the link/chain be

smaller or equal to the first. The smallest possible total strength for the largest placed

edges per actor satisfying the conditional will be the smallest possible actor degree

centrality used for determining group degree centrality.

9 The double lines under the left side of the inequality represents minimum; i.e. it should be the smallest
possible value that satisfies the entire inequality.
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Formula [17.4] signifies the true maximum as the sum of the largest strengths for

the largest edge placement (e1). This provides the maximum possible group degree

centrality for the given set of strengths.
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Reflexivity

Reflexivity requires increasing G to N2 from N(N-1) [4], [5], [6], [8] and M

changes from (N-1) to N [7], [10], [14].

Summary

This chapter began with an outline of degree centrality with a complete

description of the formulae involved for strength of ties, binary ties, and reflexivity. An

overview of the literature investigating properties of degree/point centrality followed.

Finally, the chain-link methodology for generating a complete census of structural

aggregations at the edge, node, chain and group degree were presented. The following

chapter will discuss the method of census data creation and will be followed by results

and discussion.
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Chapter 2

Method

Creation of Census

An algorithm was written to generate all possible chains for all networks of a

given size and edge density. Binary, non-reflexive networks were assumed for this study.

Chains of every edge count possible given network sizes five (5) through fifteen (15)

were created. In other words, a census of possible edge counts were generated.

A unique file was created containing all chains for a given network size and edge

count. Group degree [3.7], edge structures [14.1] and node structures [16] were

calculated for each chain.

Structure Distributions

An algorithm was used to create the structure volume distributions across each

network size and edge count. The resulting values are the total edge structure, node

structure, chain structure and distinct group degree centrality value for each network size

and edge count.

MatLab 7.1 Student™ was used to create actor degree centrality distributions

utilizing the unique chains to determine actor degree centrality appearance volumes.

Edge structure volumes were calculated as the sum of the number of actors (ni) with the

given centrality value (ei) multiplied by the number of edge structures [14.1] represented

by the chain. A proportional value was created by dividing by the total possible values;

that is the total structure volume [8] multiplied by the network size (N). MatLab 7.1

Student™ also calculated node structures with the same method using [16] in place of [8]

as the total possible values.
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In addition, MatLab 7.1 Student™ calculated actor volume and chain volume.

Actor volume was calculated as the sum of ni for the given ei with total values as the

number of chains multiplied by the network size. Chain volume was calculated as the

number of chains in which the ei appears irrelevant of the ni with a total possible values

of the chain volume.

The four resulting values represent the proportion of structures/volumes that

contain the given actor degree centrality based on network size and edge count. These

proportions also represent probability distributions based on aggregation methodology.

Group degree structure distributions were created for each network size and edge

count. The resulting data file contains the edge, node and chain structure counts for each

unique group degree centrality associated with each network size and edge count.

Results indicate the volume of each structure type for the specific group degree centrality

based on the network size and edge count.

Proportional distributions were calculated for the group degree values of each

network across the edge, node and chain structure distributions. The results indicate the

probability/proportion of each group degree for each network size and edge count

combination across edge, node and chain structure distributions.

MatLab 7.1 Student™ was used to create edge, node and chain structure

appearance probabilities (densities) for many of the structural distributions using







)1(

1

,,)(
NN

E NE

ENEN

D
S

S
Cp [18]
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where p(CD)N,E is the probability or appearance density of the specific CD group degree

value given a network of size N with edge count E. SN,E is the specific structure count

variable; i.e. edge, node or chain structure count.

Aggregates of the group centralities across all network sizes and edge counts,

based on group degree centrality value, were created based on the edge, node and chain

structure counts. Results indicate the over-all distributions of centrality values across

networks size 5 through 15.

Density Distributions

MatLab 7.1 Student™ was used to create density versions of the aggregate output

files. The edge count at a given density is determined using [4]. A list of all edge counts

for networks size five (5) through fifteen (15) were generated for edge densities one

through one hundred (see Table 1 Appendix B). The resulting list was used to create

aggregate files in which shared edge densities were used rather than all possible edge

combinations.

Information Entropy Distributions

Information entropy (Shannon, 1948) is a mathematical means of calculating the

amount of complexity (Butts, 2001), uncertainty or variability in a variable if the values

are treated as random; i.e. there is no history to the selection. This formula is represented

as:

 


N

i ii
ppXH

1
log)( [19]

where pi is the appearance probability of a given value in variable X.

Using the entropy formula [19] and actor degree/group degree

percentile/proportional distributions the variability, measured in log base e, of



Benjamin Elbirt
Page 23 of 82

proportional/probability distributions were calculated. The results indicate the entropic

variability of the data; i.e. how ordered/chaotic it is. The larger the resulting value the

greater the variability in the information. Zero means completely ordered (without

variability).

Formula [20] was used to create the entropy values for actor and group degree

centrality for a given Network across all edge densities of the given network size.







)1(

1
))(log()()(

NN

e
ppCNH [20]

where H(CN) is the entropy of actor/group degree value C given network size N.

 is the probability/proportion of structures represented by the specific CN combination

for edge count e. The result is the variability/entropy as measured in log base e of a

given actor/group degree for a specific network size across all edge densities of that

network.

Graphs & Charts

MatLab 7.1 Student™ and Microsoft Excel™ 2007 were used to create all

graphical visualizations provided.
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Chapter 3

Results

Structure Distributions

Figures [1] A through D illustrate the edge, node, chain and group degree

centrality structural combinations possible for networks size five through fifteen across

edge densities 1 through 99. A logarithmic transformation was necessary for structure

count due to the rapid growth when looking at edge, node and chain structures. The y-

axis labels illustrate the rate of aggregation. The full data set for these figures are found

in Appendix B tables 2 through 5.

Actor degree centrality Distributions

Figures [2] through [16] represent the actor degree centrality distribution across

edge structure, node structure, chain structure and actor volume for each network size,

across densities one through ninety-nine, organized by actor degree centrality value.

Each line of the graph represents a network size. The X-Axis of the graph represents the

network edge density by percentage; i.e. what percentage of the network is non-zero.

The Y-Axis represents the proportion of actors, based on structure volumes, that contain

the given actor degree value. These results represent the impact of network size and edge

count on actor degree centrality likelihood.

Figures [17] through [27] represent the actor degree centrality distributions as

shown in Figures [2] through [16]; however these are grouped by network size with each

line representing a specific actor degree centrality value. These results allow for the

comparison of actor degree centrality curves as a function of the specific network size

and edge density.
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Group Degree Centrality Distributions

Figure [28] contains the aggregate distributions of group degree centrality values

across networks size 5 through 15. Figure [29] contains the same information as

percentages/proportions or probabilities. Both aggregate across all densities for the given

network size and group degree centrality value.

Figures [30] and [31] represent the edge, node and chain structural probabilities

for group degree centrality values given edge count and network size for networks size 5

through 15. These graphs represent the likelihood of a given group degree centrality for

each network size and edge count.

Entropy Distributions

Figure [32] represents the actor degree centrality entropy distribution, for edge

structures, node structures, chain structures and actor volumes, across networks size 5

through 15 and actor degree values 0 through 14. The entropy, as measured in log base e,

represents the variability in structural distribution for the given network size and actor

degree value. The larger the number the more variation exists within the network.

Figure [33] represents the group degree centrality entropy distribution, for edge,

node and chain structures, across networks size 5 through 15 and the complete group

degree centrality range of zero to one. The entropy, as measured in log base e, represents

the variability in structural distribution for the given network size and group degree

value. The larger the number the more variation exists within the network.

The curve that manifests toward the right side of the graphs is not a phenomenon

of any kind. Rather, it is a result of the actor degree centrality range increasing as
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network size increases. Networks of size N have N actor degrees possible including zero

when measuring non-reflexive matrixes.

Summary

The results of the census creation indicate a consistent pattern of probabilities

with regard to structure likelihood with consistent impacts of both edge density and

network size. Power law, fat tail and low density distributions are manifested within the

data irrelevant of context. This is important toward forming theories of network behavior

because the common behavioral theories are contextually based, yet the phenomena of

these theories manifest within the census that is context irrelevant. The results suggest a

structural impact on behavior as an underlying influence that is further augmented by

context. The following chapter will discuss the implications of these results and describe

the results in further detail.
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Chapter 4

Discussion

Degree centrality is a basic measure/indicator of network structure and organized

behavior among any system measured by matrix algebra. This measure is heavily used

within many matrix oriented disciplines (Social Networks, Graph Theory, etc.) and many

types of distributions are described and explained in the literature presented in Chapter 1.

The use of the chain-link algorithm provides an insight into the variations in

structure that occur at multiple aggregation levels based on mathematical phenomena.

This study has completed the network census for sizes 5 through 15 to determine if any

trends or patterns exist within the aggregations. The following are a description of the

various trends found within the data as depicted by the graphs and charts in Appendix A

and B respectively; described in Chapter 3 - Results. These are by no means exhaustive

and there are many other analyses that can be performed on the current data set.

After presenting trends the discussion section of this paper will conclude with a

theory of autonomic structural influence and suggested future research for the topics

discussed.

Impact of Structural Aggregation

Edge, node and chain structure volumes center on 50% edge density and decline

as density approaches the tail ends [Figures 1A, 1B, 1C]. Group degree centrality

structure volumes are an exception to the distribution curve with smaller edge densities

containing larger structural volumes [Figure 1D]. Further, as the network size increases

the structural volume shifts toward increasingly smaller edge densities.
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Aggregation of network structures reveals extreme variation reduction as

aggregation occurs. Figure [1] shows edge structure distributions are 1050 larger in

volume from node structures which are 1013 larger than chain structures which are 106

larger than group structures. This is an extreme reduction in terms of degrees of freedom.

There are 9.05x1061 edge structures to 14 distinct group degree centrality structures for

networks size 15 (see tables 2 and 5).

Indicators for Smaller Density; Larger Structure Volume

Network edge density is a group level measure that indicates the amount of

interconnection between members of the network. The larger likelihood of smaller

densities for network structure, when looking at group degree centrality structures,

suggests a general structural phenomenon for larger volumes of smaller densities in

networks.

This trend is further illustrated by Figure [29], which depicts structural

probabilities for group degree centrality values given network size. Node structure

distributions are centered on the 0.50 group degree centrality value. The impact of

increasing network size is to flatten the probability curve.

Chain structure distributions start slightly skewed toward smaller group degree

centrality values; however the trend tends to center toward 0.50 and flatten as network

size increases. The conflict, however, is in edge structure probabilities where group

degree centrality values tend to decrease as network size increases and are already

skewed heavily toward to smaller group degree value.

The importance of skewing toward smaller group degree values is not readily

apparent, but can become so when reviewing Formula [3.2]. As Donninger (1986) found
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the formula illustrates the group degree measure is a function of the maximum actor

degree centrality of the network. For there to be a tendency toward smaller group degree

values there must be a tendency toward smaller actor degree centrality values resulting in

a need for smaller edge densities. Figures [2] through [16] illustrate smaller actor degree

centrality values are more prevalent in smaller edge density networks.

Indicators for Power Law Distributions

Power law distributions (Barab´asi, et. al., 1999) are prevalent throughout edge

structure Figures [2] through [16]; actor degree distributions based on network size and

edge density. The larger actor degree values exist in larger densities and smaller actor

degree values exist in smaller edge densities. Further, the power law occurs in both

directions; i.e. at larger densities the power law favors the larger actor degree for the

given network size; the smaller group degree values are favored by the smaller densities.

Mathematically this phenomenon should be expected. The presence of smaller

actor degree values in larger densities decreases as more edges are non-zero. Further, as

density decreases edge placement decreases thus decreasing actor degree values. This

phenomenon is partly responsible for the “fat tail” phenomenon discussed later in this

paper.

An interesting exception is the chain structure distribution for actor degree zero in

Figure [2]. As previously stated, chain volume is calculated as the number of chains in

which the ei appears irrelevant of the ni with a total possible values of the chain volume.

Given this methodology, the zero actor degree is and should be the only degree

distributed as shown. This is because it is the only degree centrality value that appears as
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a result of missing edges; i.e. all other degrees require placing an edge and the zero

degree centrality requires a lack of edges.

Indicators for “Fat Tail” Distributions

The “fat tail” phenomenon is most obvious when reexamining the edge structure

actor degree distributions in Figures [17] through [27]. These figures show the actor

degree centrality values simultaneously for the given network size. Increasing network

size causes a greater distinction in the tails and the tails occur across all actor degrees.

The fatter side of the tails is consistent with power law indicators such that the smaller

actor degree values are more prevalent in smaller edge densities while larger actor

degrees are more prevalent in larger edge densities. Further, the larger group degree

values are found in the smaller tail consistent with other phenomenon.

Figures [30] and [31] allow the phenomenon to be seen in group degree centrality

results. Figure [31] contains the best representation as data points are fine enough to see

phenomena at network size 15. Notice the two tail ends of the edge structure variation

are more probable than those between and the phenomenon becomes more distinct as

network size increases.

Information Entropy

As network size increases so does the entropy of all the measures (Figure [32]).

This increase tends to slow as network size increases suggesting a maximal point of

entropy. All actor degrees report near equal entropies suggesting an even distribution of

actor degree centralities across all edge densities of a given network.

Figures [33] through [35] represent the edge, node and chain structure group

degree entropy distributions. Structural aggregation results in a smoothening of the
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curve. However, there is greater entropy in node structure variation versus edge and

chain structure variation. This is a result of structural aggregations reducing the

complexity of the structures and restricting the variations to a more specific and variant

set. Edge structures have the greatest amount of repetition and reduce down to a very

specific, but highly variant set of node structures. The chain structure reduction from

node structures results in an additional smoothing. This smoothing has the effect of

reducing complexity without much of an effect in reducing repetition.

In contrast to actor degree entropy distributions, group degree entropy

distributions follow a very linear decline as group degree value approaches one. This is a

related phenomenon of the low density high structure volume for group degree values.

Given the low structural volume there should be smaller variations possible and thus

much smaller entropy.

Finally, it should be noted how small the total entropy values are. Edge structures

have a maximal entropy of slightly under 3.5, node structures have a maximal entropy of

roughly 6.0 and chain structures have a maximal entropy of slightly more than 2.5

(Figures 33 through 35; Network Size = 15). The English language is reported to have

upper bound entropy of roughly 1.75 bits (base 2) or roughly 1.21 base e (Brown et. al,

1992). This supports the reduction of complexity from edge to node structures and the

smoothing result of node to chain structures. Further, the results support the massive

redundancy in matrix structures under conditions of aggregation.

A Theory of Autonomic Structural Influence

Thus far the discussion has indicated the majority of degree centrality based

structural phenomena commonly described in networks literature (Airoldi & Carley,



Benjamin Elbirt
Page 32 of 82

2005; Barabasi & Albert, 1999; Newman, Strogatz, Watts, 2001; Carley & Butts, 1999;

Borgatti & Carley, 2006) are the result of matrix algebra. Further these phenomena are

controlled for by limitations that exist in the configuration used regardless of the data

contextual source. Fat tails, power laws and larger probabilities for smaller edge

densities all manifest simultaneously across network data when context is removed

suggesting a mathematical regularity.

This influence can be considered autonomic for any contextual structure as the

influence is persistent across all contexts. The samples and results in current literature

prove the influence is persistent within contextual networks albeit exceptions occur

(Barnett & Elbirt, 2007). Although the exceptions are present, their probabilities are low

enough to warrant investigation into long-term structure patterns and the likelihood of

survival/maintenance of these structures over time.

Thus a theory of autonomic structural influence can be formulated for future

contextual studies that use matrix algebra to represent inter/intra relations of systems; i.e.

networks. This theory states there is an underlying mathematical influence to system

phenomena that can be removed as noise to determine non-structural influences on

systems represented by matrix algebra. These non-structural influences would be such

things as the unique characteristics of the system or the behavior of individual actors.

This theory is a very important guide toward understanding the internal and

external influences on social systems. Not only do the results provide a guideline for

determining likelihood estimations for network structures, they also allow for the removal

of structural patterns of the models of influence. Although the predictability of what is

being removed is very high the information most needed for scientific understanding is
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the overlying influences that are at odds or agreement with the underlying autonomic

phenomena.

This is in contrast with current methodology; P* (Robins, G., T. A. B. Snijders, et

al. 2007), and scale free distributions (Newman, Watts, Strogatz, 2002). Often the

residual information found in violation of the structural patterns (fat-tails, power-law

distributions, low densities) is removed as noise when in fact it should be treated as real

data and everything else noise. Further studies into the relationships that manifest

through autonomic pattern removal are necessary for more information and determination

of theory validity.

Future Research

Structural aggregation and autonomic influence are not exclusive to social

phenomena. Chemistry, particle physics, biological proteins and other areas of science

exhibit structural relationships among components that can and are represented by matrix

algebra. Current investigations into the human genome rely on structural aggregations

and pattern recognition algorithms (Gerstein and Jansen, 2000). Nanotechnology

advocates have long term goals including the relationships of multiple nanos into nano-

systems that will also inter-relate with each other and their environment as nano-

ecologies (Roco, 2007). One might eventually create nano-societies.

Additional questions exist if the autonomic structural influence theory is applied

and the structural patterns removed. What will the results of removing structural noise

reveal? What are the significant influences provided by contextual behavior and are

these influences predicted with greater accuracy? How much influence does structure
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have on behavior? Does context influence long term structural patterns and behaviors or

are these structures slaves to the algebra?

The degree centrality measure is only one of a handful of measures used in

networks and matrix algebra. Social networks use measures of closeness, betweenness,

eigenvector, entropy and structural equivalence to determine structural behavior. What

aggregations exist for these measures? Does the autonomic structural influence exist for

these measures or is it exclusive to degree centrality? Given the relations among these

measures (Kincaid, 1993), one might expect a similar autonomic pattern.

Measurement is a key problem as evident by the large scale research efforts into

atomic particle measurement devices and nano-visualization tools. Temporal factors,

large data sets and costly computing needs continue to plague investigative efforts. Yet,

temporal based studies using excessive amounts of data are necessary for validity and

reliability. How does a structure that violates likelihood estimations survive or otherwise

manifest in the first place? What level of influence do existing structural patterns have

on future patterns given likelihood estimations? Can structures be manipulated?

Conclusion

This paper offers an alternative perspective on network behavior analysis in

which the autonomic behavior is isolated from the contextual. The results indicate a

highly organized and regulated pattern to structures that underlies any contextual

influences that may exist. Powerful phenomena described in network literature on

contextual subjects have been recreated through non-contextual network structural

analysis. This supports the notion of underlying structural influence on behavior and
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suggests a re-evaluation of current research methodologies and results. Further research

into structural aggregation and the impact of structural phenomena on behavior remains.
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